Insert Geometry Designed for Targeted Cooling
Walter's FM5 finishing and RM5 roughing indexable insert geometries are designed to deliver optimal cooling, longer tool life, and increased productivity in high-temperature alloy and stainless-steel machining.
Share





Walter's FM5 finishing and RM5 roughing indexable insert geometries are designed to deliver optimal cooling, longer tool life, and increased productivity in high-temperature alloy and stainless-steel machining. The inserts feature “jet guiding geometry,” or targeted cooling. Channels pressed in the rake face enable coolant to reach the cutting edge directly, underneath the chip, to maximize the cooling effect, increase tool life and optimize chip breaking for increased productivity and improved workpiece surfaces.
Three insert grades (WSM10S, WSM20S and WSM30S) feature PVD Al2O3 heat shield, and one (WMP20S) features CVD. All grades also have the company’s Tiger-tec Silver coating for maximum tool life.
The inserts’ double positive macro-geometry reduces notch formation and crater wear. Both the RM5 and FM5 geometries were designed to work with the coolant channel geometries of the company’s toolholders, but can also be used with standard ISO turning toolholders.
Related Content
-
High-Feed Machining Dominates Cutting Tool Event
At its New Product Rollout, Ingersoll showcased a number of options for high-feed machining, demonstrating the strategy’s growing footprint in the industry.
-
Finding the Right Tools for a Turning Shop
Xcelicut is a startup shop that has grown thanks to the right machines, cutting tools, grants and other resources.
-
Briquetting Manufacturer Tools Up for Faster Turnaround Times
To cut out laborious manual processes like hand-grinding, this briquette manufacturer revamped its machining and cutting tool arsenal for faster production.